
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 144
Volume 2, Issue 1, February 2011

An Analysis of Software Cost Estimation

Traditional Models with Neural Network Based

Approach

Manpreet Kaur*, Sushil Kumar*, Mamta Sharma

*Dept CSE, RIMT-IET, Mandigobindgarh, Fatehgah Sahib

manumtech@gmail.com, mmta9976@gmail.com, sushilgarg70@yahoo.com

Abstract: Software effort estimation actually encompasses all

estimation, risk analysis, scheduling, and SQA/SCM planning.

However, in the context of set of resources, planning involves

estimation - your attempt to determine how much money, how

much effort, how many resources, and how much time it will

take to build a specific software-based system or product. In

this paper we will study the efficiency of Neural Network

based cost estimation model with the traditional cost

estimation model like Halstead Model, Bailey-Basili Model,

Doty Model. We conclude our result with the proposal of

Neuron based Model basis on Back propagation Technique.

1. Introduction

A Neural Network (NN) is a computer

software (and possibly hardware) that simulates a

simple model of neural cells in animals and humans.

The purpose of this simulation is to acquire the

intelligent features of these cells. In this document,

when terms like neuron, neural network, learning, or

experience are mentioned, it should be understood that

we are using them only in the context of a NN as

computer system. NNs have the ability to learn by

example, e.g. a NN can be trained to recognize the

image of car by showing it many examples of a car.

2. Literature Survey

Accurate estimate means better planning and

efficient use of project resources such as cost, duration

and effort requirements for software projects especially

space and military projects [1], [2]. Efficient software

project estimation is one of the most demanding tasks in

software development. Problem of inaccurate estimate

for projects and in many cases inability to set the

correct release day for their software correctly lead to

inefficient use of project resources. Unfortunately,

software industry suffers the problem of incorrect

estimate for projects and in many cases inability to set

the correct release day for their software correctly. This

leads to many losses in their market, e.g. risk due to low

quality of the deliverables and penalties for missing the

deadlines. Normally, estimation is performed using

only human expertise [3], [4], but recently attention has

turned to a variety of computer-based learning

techniques.

In 1995, Standish Group served over 8,000

software projects for the purpose of budget analysis. It

was found that 90% of these projects exceeded its

initially computed budget. Moreover, 50% of the

completed projects lake the original requirements [5].

From these statistics, it can be seen how prevalent the

estimation problem is. Evaluation of many software

models were presented in [6], [7], [8].

Numerous models were explored to provide

better effort estimation [9], [10], [11], [12]. In [4], [13],

authors provided a survey on the effort and cost

estimation models.

Serious research in the Neural Network area is

started in the 1950’s and 1960’s by researchers like

Rosenblatt (Perceptron), Widrow and Hoff

(ADALINE). In 1969 Minsky and Papert wrote a book

exposing Perceptron limitations. This effectively ended

the interest in neural network research. In the late

1980’s interest in NN increased with algorithms like

Back Propagation, Cognitrons and Kohonen. (Many of

them where developed quietly during the 1970s)

In the literature of Neural Networks (NNs) The

following function is called a Sigmoid function.:

s(x)= 1/ (1 + e
-a * x

)

The coefficient a is a real number constant.

Usually in NN applications a is chosen between 0.5 and

2. As a starting point, you could use a=1 and modify it

later when you are fine-tuning the network. Note that

s(0)= 0.5, s(∞)= 1, s(-∞)=0. (The symbol ∞ means

infinity).

The Sigmoid function is used on the output of

neurons. In a NN context, a neuron is a model of a

neural cell in animals and humans. This model is

simplistic, but as it turned out, is very practical. In NN

the inputs simulate the stimuli/signals that a neuron

gets, while the output simulates the response/signal

which the neuron generates. The output is calculated by

multiplying each input by a different number (called

weight), adding them all together, then scaling the total

to a number between 0 and 1.

The following diagram shows a simple neuron with:

1. Three inputs [x1, x2, x3]. The input values are

usually scaled to values between 0 and 1.

2. Three input weights [w1, w2, w3]. The weights are

real numbers that usually are initialized to some

random numbers. Do not let the term weight

mislead you, it has nothing to do with the physical

sense of weight, in a programmer context, think of

mailto:manumtech@gmail.com
mailto:mmta9976@gmail.com

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 145
Volume 2, Issue 1, February 2011

the weight as a variable of type float/real that you

can initialize to a random number between 0 and 1.

3. One output is shown as z. A neuron has one (and

only one) output. Its value is between 0 and 1. It

can be scaled to the full range of actual values.

Fig. 1 Neuron Model with 3 inputs

Let

d= (x1 * w1) + (x2 * w2) + (x3 * w3)

In a more general fashion, for n number of inputs:

wx i

n

i
i

d

1

Let θ be a real number which we will call

Threshold. Experiments have shown that best values for

θ are between 0.25 and 1. Again, in a programmer

context, θ is just a variable of type float/real that is

initialized to any number between 0.25 and 1. When

sigmoid function, s(), is applied:

z= s(d + θ)

This says that the output z is the result of

applying the sigmoid function on (d + q). In NN

applications, the challenge is to find the right values for

the weights and the threshold.

The following diagram shows a Back Propagation NN:

Figure 2: Back Propagation Network

The above NN consists of three layers:

 Input layer with three neurons.

 Hidden layer with two neurons.

 Output layer with two neurons.

The output of a neuron in a layer goes to all

neurons in the following layer. Each neuron has its

own input weights. The weights for the input layer are

assumed to be 1 for each input. In other words, input

values are not changed and the output of the NN is

reached by applying input values to the input layer,

passing the output of each neuron to the following layer

as input.

The Back Propagation NN must have at least

an input layer and an output layer. It could have zero or

more hidden layers.

The number of neurons in the input layer

depends on the number of possible inputs we have,

while the number of neurons in the output layer

depends on the number of desired outputs. The number

of hidden layers and how many neurons in each hidden

layer cannot be well defined in advance, and could

change per network configuration and type of data. In

general the addition of a hidden layer could allow the

network to learn more complex patterns, but at the same

time decreases its performance. You could start a

network configuration using a single hidden layer, and

add more hidden layers if you notice that the network is

not learning as well as you like e.g. suppose we have a

bank credit application with ten questions, which based

on their answers, will determine the credit amount and

the interest rate. To use a Back Propagation NN, the

network will have ten neurons in the input layer and

two neurons in the output layer.

The Back Propagation NN works in two

modes, a supervised training mode and a production

mode. The training can be summarized as follows:

First, start by initializing the input weights for

all neurons to some random numbers between 0 and 1,

then:

i. Apply input to the network.

ii. Calculate the output.

iii. Compare the resulting output with the desired

output for the given input. This is called the error.

iv. Modify the weights and threshold q for all neurons

using the error.

v. Repeat the process until error reaches an acceptable

value (e.g. error < 1%), which means that the NN

was trained successfully, or if we reach a maximum

count of iterations, which means that the NN

training was not successful.

A suitable training algorithm can be used for

updating the weights and thresholds in each iteration

(step IV) to minimize the error.

Changing weights and threshold for neurons in

the output layer is different from hidden layers. Note

that for the input layer, weights remain constant at 1 for

each input neuron weight.

The literature considered the mean magnitude

of relative error (MMRE) as the main performance

measure.

The value of an effort predictor can be

reported many ways including MMRE. MMRE value is

computed from the relative error, or RE, which is the

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 146
Volume 2, Issue 1, February 2011

relative size of the difference between the actual and

estimated value:

RE.i = (estimate.i - actual.i) / (actual.i)

Given a data set of of size "D", a "Training set

of size "(X=|Train|) <= D", and a "test" set of size

"T=D-|Train|", then the mean magnitude of the relative

error, or MMRE, is the percentage of the absolute

values of the relative errors, averaged over the "T"

items in the "Test" set; i.e.

MMRE.i = abs(RE.i)

MMRE = 100/T*(MRE.1 + MRE.2 + ... +

MRE.T)

The mean magnitude of relative error (MMRE)

can also be written as:

Where yi represents the i
th

 value of the effort

and ˆyi is the estimated effort.

The another evaluation criteria to measure the

performance of the developed models using n

measurements selected to be the route mean of the sum

square of the error:

Where yi represents the ith value of the effort

and ˆyi is the estimated effort.

3. Result & Discussion

The dataset of [10] is used for the comparison

of different models. In this dataset, there is empirical

data in terms of KLOC, Function Point and Effort

values of 18 projects as shown in table I.

The data of first 13 projects is used as training

data for the Neural Network and data of last 5 projects

is used as testing data of the trained Neural Network.

The neural network used is backpropagation based

Neural Network that consists of two neurons in input

layer, two neurons in the hidden layer and one neuron

in the output layer. In the testing phase the calculated

efforts and errors using different models is shown in

table 1 and table 2 respectively.

Table1. Data of Actual Effort Required

Project
No.

KLOC Function
Point

Actual
Effort (in
person-
hour)

1 95.2 31 125.8

2 50.2 21 90

3 56.5 22 81

4 56.5 21 91.8

5 32.1 38 42.6

6 67.5 29 98.4

7 15.8 29 20.9

8 10.5 34 10.3

9 21.5 31 28.5

10 5.1 29 9

11 4.2 17 8

12 9.8 32 8.3

13 22.1 38 6

14 7 29 8.9

15 88.6 45 100.7

16 10.7 32 17.6

17 13.5 29 25.9

18 105.8 39 148.3

4. conclusion

The performance of the Neural Network based

effort estimation system and the other existing Halstead

Model, Walston-Felix Model, Bailey-Basili Model and

Doty Model models is compared for effort dataset

available in literature [15]. The results show that the

Neural Network system has the lowest MMRE and

RMSSE values i.e. 12.657 and 18.587 respectively. The

second best performance is shown by Bailey-Basili

software estimation system with 21.385 and 25.1345 as

MMRE and RMSSE values. Hence, the proposed Neuro

based system is able to provide good estimation

capabilities. It is suggested to use of Neuro based

technique to build suitable generalized type of model

that can be used for the software effort estimation of all

types of the projects.

Table 2: Error Calculated In Various Efforts Estimation

Models

Perform-
ance

Criteria

Model Used

NN
System

Halstead
Model

Bailey-
Basili
Model

Doty
Model

MMRE 12.657 155.645 21.385 302.5023

RMSSE 18.587 318.718 25.1345 299.4742

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 147
Volume 2, Issue 1, February 2011

Fig 3 Comparative Analysis of different Cost

Estimation Models

References:

1. L. C. Briand, K. E. Emam, and I. Wieczorek,

“Explaining the cost of european space and military

projects,” in ICSE ’99: Proceedings of the 21st

international conference on Software engineering,

(Los Alamitos, CA, USA), pp. 303–312, IEEE

Computer Society Press, 1999.

2. “Estimating software projects,” SIGSOFT Softw.

Eng. Notes, vol. 26, no. 4, pp. 60–67, 2001.

3. J. W. Park R, W. Goethert, “Software cost and

schedule estimating: A process improvement

initiative,” tech. report, 1994.

4. M. Shepper and C. Schofield, “Estimating software

project effort using analogies,” IEEE Tran. Software

Engineering, vol. 23, pp. 736–743, 1997.

5. T. S. Group, CHAOS Chronicles. PhD thesis,

Standish Group Internet Report, 1995.

6. M. Boraso, C. Montangero, and H. Sedehi,

“Software cost estimation: An experimental study of

model performances,” tech. report, 1996.

7. O. Benediktsson, D. Dalcher, K. Reed, and M.

Woodman, “COCOMO based effort estimation for

iterative and incremental software development,”

Software Quality Journal, vol. 11, pp. 265–281,

2003.

8. T. Menzies, D. Port, Z. Chen, J. Hihn, and S.

Stukes, “Validation methods for calibrating

software effort models,” in ICSE ’05: Proceedings

of the 27th international conference on Software

engineering, (New York, NY, USA), pp. 587–595,

ACM Press, 2005.

9. S. Chulani, B. Boehm, and B. Steece, “Calibrating

software cost models using bayesian analysis,”

IEEE Trans. Software Engr., July-August 1999, pp.

573–583, 1999.

10. B. Clark, S. Devnani-Chulani, and B. Boehm,

“Calibrating the cocomo ii post-architecture model,”

in ICSE ’98: Proceedings of the 20th international

conference on Software engineering, (Washington,

DC, USA), pp. 477–480, IEEE Computer Society,

1998.

11. S. Chulani and B. Boehm, “Modeling software

defect introduction and removal: Coqualmo

(constructive quality model),” tech. report.

12. S. Devnani-Chulani, “Modeling software defect

introduction,” tech. report.

13. G. Witting and G. Finnie, “Estimating software

developemnt effort with connectionist models,” in

Proceedings of the Information and Software

Technology Conference, pp. 469–476, 1997.

14. K. Peters, “Software project estimation,” Methods

and Tools, vol. 8, no. 2, 2000.

